ar X iv : m at h . D G / 0 40 93 03 v 1 1 7 Se p 20 04 VANISHING GEODESIC DISTANCE ON SPACES OF SUBMANIFOLDS AND DIFFEOMORPHISMS

نویسندگان

  • PETER W. MICHOR
  • DAVID MUMFORD
چکیده

The L-metric or Fubini-Study metric on the non-linear Grassmannian of all submanifolds of type M in a Riemannian manifold (N, g) induces geodesic distance 0. We discuss another metric which involves the mean curvature and shows that its geodesic distance is a good topological metric. The vanishing phenomenon for the geodesic distance holds also for all diffeomorphism groups for the L-metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Geodesic Distance on Spaces of Submanifolds and Diffeomorphisms

The L-metric or Fubini-Study metric on the non-linear Grassmannian of all submanifolds of type M in a Riemannian manifold (N, g) induces geodesic distance 0. We discuss another metric which involves the mean curvature and shows that its geodesic distance is a good topological metric. The vanishing phenomenon for the geodesic distance holds also for all diffeomorphism groups for the L-metric.

متن کامل

Lorentzian Geodesic Flows between Hypersurfaces in Euclidean Spaces

There are several approaches to this question. One is from the perspective of a Riemannian metric on the group of diffeomorphisms of R. If the smooth hypersurfaces Mi bound compact regions Ωi , then the group of diffeomorphisms Diff(R) acts on such regions Ωi and their boundaries. Then, if φt, 1 ≤ t ≤ 1, is a geodesic in Diff(R) beginning at the identity, then φt(Ω) (or φt(Mi)) provides a path ...

متن کامل

Sobolev Metrics on Shape Space of Surfaces in N-space

This paper extends parts of the results from [14] for plane curves to the case of surfaces in Rn. Let M be a compact connected oriented manifold of dimension less than n without boundary. Then shape space is either the manifold of submanifolds of Rn of type M , or the orbifold of immersions from M to Rn modulo the group of diffeomorphisms of M . We investigate the Sobolev Riemannian metrics on ...

متن کامل

A General Theory of Canonical Forms

If G is a compact Lie group and M a Riemannian G-manifold with principal orbits of codimension k then a section or canonical form for M is a closed, smooth k-dimensional submanifold of M which meets all orbits of M orthogonally. We discuss some of the remarkable properties of G-manifolds that admit sections, develop methods for constructing sections, and consider several applications. O. Introd...

متن کامل

- Adic Numbers And Continues Transition Between Dimensions

Fractal measures of images of continuous maps from the set of p-adic numbers Q p into complex plane C are analyzed. Examples of " anomalous " fractals, i.e. the sets where the D-dimensional Hausdorff measures (HM) are trivial, i.e. either zero, or σ-infinite (D is the Hausdorff dimension (HD) of this set) are presented. Using the Caratheodory construction, the generalized scale-covariant HM (GH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004