ar X iv : m at h . D G / 0 40 93 03 v 1 1 7 Se p 20 04 VANISHING GEODESIC DISTANCE ON SPACES OF SUBMANIFOLDS AND DIFFEOMORPHISMS
نویسندگان
چکیده
The L-metric or Fubini-Study metric on the non-linear Grassmannian of all submanifolds of type M in a Riemannian manifold (N, g) induces geodesic distance 0. We discuss another metric which involves the mean curvature and shows that its geodesic distance is a good topological metric. The vanishing phenomenon for the geodesic distance holds also for all diffeomorphism groups for the L-metric.
منابع مشابه
Vanishing Geodesic Distance on Spaces of Submanifolds and Diffeomorphisms
The L-metric or Fubini-Study metric on the non-linear Grassmannian of all submanifolds of type M in a Riemannian manifold (N, g) induces geodesic distance 0. We discuss another metric which involves the mean curvature and shows that its geodesic distance is a good topological metric. The vanishing phenomenon for the geodesic distance holds also for all diffeomorphism groups for the L-metric.
متن کاملLorentzian Geodesic Flows between Hypersurfaces in Euclidean Spaces
There are several approaches to this question. One is from the perspective of a Riemannian metric on the group of diffeomorphisms of R. If the smooth hypersurfaces Mi bound compact regions Ωi , then the group of diffeomorphisms Diff(R) acts on such regions Ωi and their boundaries. Then, if φt, 1 ≤ t ≤ 1, is a geodesic in Diff(R) beginning at the identity, then φt(Ω) (or φt(Mi)) provides a path ...
متن کاملSobolev Metrics on Shape Space of Surfaces in N-space
This paper extends parts of the results from [14] for plane curves to the case of surfaces in Rn. Let M be a compact connected oriented manifold of dimension less than n without boundary. Then shape space is either the manifold of submanifolds of Rn of type M , or the orbifold of immersions from M to Rn modulo the group of diffeomorphisms of M . We investigate the Sobolev Riemannian metrics on ...
متن کاملA General Theory of Canonical Forms
If G is a compact Lie group and M a Riemannian G-manifold with principal orbits of codimension k then a section or canonical form for M is a closed, smooth k-dimensional submanifold of M which meets all orbits of M orthogonally. We discuss some of the remarkable properties of G-manifolds that admit sections, develop methods for constructing sections, and consider several applications. O. Introd...
متن کامل- Adic Numbers And Continues Transition Between Dimensions
Fractal measures of images of continuous maps from the set of p-adic numbers Q p into complex plane C are analyzed. Examples of " anomalous " fractals, i.e. the sets where the D-dimensional Hausdorff measures (HM) are trivial, i.e. either zero, or σ-infinite (D is the Hausdorff dimension (HD) of this set) are presented. Using the Caratheodory construction, the generalized scale-covariant HM (GH...
متن کامل